A Probabilistic Multimodal Sensor Aggregation Scheme Applied for a Mobile Robot
نویسندگان
چکیده
Dealing with methods of human-robot interaction and using a real mobile robot, stable methods for people detection and tracking are fundamental features of such a system and require information from different sensory. In this paper, we discuss a new approach for integrating several sensor modalities and we present a multimodal people detection and tracking system and its application using the different sensory systems of our mobile interaction robot Horos working in a real office environment. These include a laser-range-finder, a sonar system, and a fisheye-based omnidirectional camera. For each of these sensory information, a separate Gaussian probability distribution is generated to model the belief of the observation of a person. These probability distributions are further combined using a flexible probabilistic aggregation scheme. The main advantages of this approach are a simple integration of further sensory channels, even with different update frequencies and the usability in real-world environments. Finally, promising experimental results achieved in a real office environment will be presented.
منابع مشابه
Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDynamic Bayes Net Approach to Multimodal Sensor Fusion
Autonomous mobile robots rely on multiple sensors to perform a varied number of tasks in a given environment. Diierent tasks may need diierent sensors to estimate diierent subsets of world state. Also, diierent sensors can cooperate in discovering common subsets of world state. This paper presents a new approach to multimodal sensor fusion using dynamic Bayesian networks and an occupancy grid. ...
متن کاملMulti-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking
Efficient and robust techniques for people detection and tracking are basic prerequisites when dealing with Human–Robot Interaction (HRI) in real-world scenarios. In this paper, we introduce a new approach for the integration of several sensor modalities and present a multi-modal, probability-based people detection and tracking system and its application using the different sensory systems of o...
متن کامل